Fixed energy potentials through an auxiliary inverse eigenvalue problem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Scattering with Fixed Energy and an Inverse Eigenvalue Problem on the Half-line

Recently A. G. Ramm (1999) has shown that a subset of phase shifts δl, l = 0, 1, . . ., determines the potential if the indices of the known shifts satisfy the Müntz condition ∑ l =0,l∈L 1 l = ∞. We prove the necessity of this condition in some classes of potentials. The problem is reduced to an inverse eigenvalue problem for the half-line Schrödinger operators.

متن کامل

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

On an Inverse Eigenvalue Problem for Unitary

We show that a unitary upper Hessenberg matrix with positive subdiago-nal elements is uniquely determined by its eigenvalues and the eigenvalues of a modiied principal submatrix. This provides an analog of a well-known result for Jacobi matrices.

متن کامل

Inverse scattering problem with fixed energy and fixed incident direction

Let A q (α ′ , α, k) be the scattering amplitude, corresponding to a local potential q(x), x ∈ R 3 , q(x) = 0 for |x| > a, where a > 0 is a fixed number, α ′ , α ∈ S 2 are unit vectors, S 2 is the unit sphere in R 3 , α is the direction of the incident wave, k 2 > 0 is the energy. We prove that given an arbitrary function f (α ′) ∈ L 2 (S 2), an arbitrary fixed α 0 ∈ S 2 , an arbitrary fixed k ...

متن کامل

Nonnegative Inverse Eigenvalue Problem

Nonnegative matrices have long been a sorce of interesting and challenging mathematical problems. They are real matrices with all their entries being nonnegative and arise in a num‐ ber of important application areas: communications systems, biological systems, economics, ecology, computer sciences, machine learning, and many other engineering systems. Inverse eigenvalue problems constitute an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inverse Problems

سال: 2012

ISSN: 0266-5611,1361-6420

DOI: 10.1088/0266-5611/28/8/085007